
~ Pergamon 
www.elsevier.com/locate/jappmat hmech 

J. Appl. Maths Mechs, Vol. 63, No. 3, pp. 427438, 1999 
© 1999 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII: S0021--8928(99)00054-4 0021-8928/99/S--see front matter 

INVESTIGATION OF THE STRUCTURE OF 
A WEAK SHOCK WAVE AND THE PROPAGATION 

OF SMALL PERTURBATIONS IN GASEOUS MIXTURES 
USING BURNETT'S EQUATIONS f 

M. Sh. S H A V A L I Y E V  

Moscow 

(Received 14 January 1998) 

Two problems are investigated: the structure of a weak shock wave and the propagation of perturbations of small amplitude in 
a binary mixture of monatomic gases. In the first problem, the contributions to the hydrodynamic quantities are obtained in the 
second approximation with respect to the wave intensity. In the second problem, acoustic, thermal and diffusion mode are 
considered and it is shown that there is negative dispersion of the acoustic mode. © 1999 Elsevier Science Ltd. All rights reserved. 

When investigating the structure of a shock wave in a binary mixture, only one dissipative mechanism 
was initially taken into account, namely, diffusion [1], and later [2] all dissipative mechanisms were 
considered and an analytic solution of the problem was obtained for molecular gases using the 
Navier-Stokes equations. 

In the problem of the structure of a weak shock wave, the distribution of the hydrodynamic quantities 
in the wave is constructed in the form of power series in a small parameter e--the wave intensity. In the 
papers mentioned above the first non-trivial terms in these expansions were taken into account, which, 
in particular, enabled an expression to be obtained for the thickness of the shock wave based on the 
maximum slope of the density profile. The finer properties of the shock-wave structure, namely, the asym- 
metry of the profiles of the hydrodynamic quantities, the distance between their centres, etc., have been 
investigated in recent years experimentally [3] and by a numerical solution of the hydrodynamic equations 
using the Chapman-Enskog method [4]. In the case of weak shock wave terms of the first order in e in 
the expansions of the hydrodynamic quantities incorrectly describe these properties of the wave structure 
not only quantitatively but also qualitatively. Also, the effect of higher-order terms in e on the shock- 
wave structure have not been investigated either in single-component gases or in gaseous mixtures. 

In this paper, using the hydrodynamic equations of the Burnett approximation of the Chapman- 
Enskog method, we calculate the second-order terms in e in the distributions of the hydrodynamic 
quantities in a, weak shock wave. Using these we derive and investigate expressions for the asymmetry 
parameter of the density, velocity and temperature profiles, the distances between the centres of these 
profiles and the correction to the wave thickness. It is shown that the Burnett terms in the hydrodynamic 
equations are decisive in the expression for the asymmetry parameter. Only monatomic gases and their 
mixtures are considered, since only for these can Burnett terms be calculated completely and have a 
relatively simple form. 

We also investigate the propagation of small perturbations in a binary mixture of monatomic gases 
using Burnett's equations for the case of arbitrary intermolecular interactions. In addition to acoustic 
modes, we also consider non-propagating modes (thermal and diffusion). The results are presented 
both for the initial and for the boundary-value problems. 

We separately consider the case of a mixture with sharply differing molecular masses. It is shown 
that in such a mixture, containing a small content of the light component, negative dispersion occurs 
(a reduction in the velocity of sound as the frequency increases), unlike positive dispersion in single- 
component gases and "normal" mixtures, which gives the experimental fact a theoretical basis. 

1. THE S T R U C T U R E  OF A WEAK SHOCK WAVE 

Formulation of the problem. The laws of conservation of mass of the mixture, of the mass of one of the 
components of the mixture (we will suppose, to fix our ideas, that this is the component of the lightest 
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molecules, m 1 < m2, where mi is the mass of a molecule of the ith kind), of momentum and total energy 
of the mixture in a system of coordinates moving together with the wave in the negative direction of 
the z axis, have the form 

pu = C0, C0 = p-u- (1.1) 

p u q  + ij = C 3, C l = Pru- (1.2) 

p + pu 2 - ff = C3, C3 = P- + P-(U-) 2 (1.3) 

p ~ l u 2  +cpT)-ut~+q=C4, C4=P-u-( l  (u-)2 +c~T - )  (1.4) 

Ci = ~ , Cp = ClCpI + C2Cp2, Cpi = -~'~ Ri = ks°mi 

Here ci is the mass concentration of the ith component, cp is the specific heat capacity of the mixture 
at constant pressure, in a monatomic gas y = 5/3, kBo is Boltzmann's constant, and u is the hydrodynamic 
velocity. The pressure p is related to the concentrations, the density p and the temperature T by the 
equation of state of a mixture of ideal gases 

p = (clRi + c2R~)pT (1.5) 

The superscripts minus and plus denote quantities in the free stream and downstream of the wave, 
respectively. 

The viscous stress tensor t~, the diffusion flux of the first component of the mixture il and the heat 
flux q are given by the following relations [5] 

4 du 
o = ' ~ t - ~ + f B  (1.6 / 

i,=-P~+c, c2(~ +oLTdT~'] "~" -~"J  + h ,J  (1.7) 

dT PP i 
q = - x - - ~  + (cpj - ct, 2)Ti I + tX r n2mlm2 I + qn (1.8) 

Here ~t, D and x are the coefficients of dynamic viscosity, diffusion and thermal conductivity, COT is 
the thermal diffusion factor and % = (m2 - ml)n/p. 

The complete expressions for the Burnett contributions %, itB, qB in the case of mixtures of monatomic 
gases were obtained previously in [5]. In the approximation considered here we only need to retain 
terms that are linear in the derivatives. Then 

d2p +a d2T ^ d2ct d2u 
~ a = ~ l ' - ~  "" I . , z - ~ - T + p 3 - ~ ,  i la=[$4 dz 2 

q;  13, = p 

* = _n./.. 
qB ~ -  qB +(Cpl -cp2)TilB + { x y ~ i l B ,  Yi 

n them. z n 

qc a . p2T . 5 2 2 
[I 3 =--(02 nmim2 .... laD, [~4 = P °a4,1 3"~2pYty2~Dtxr + 02PlxD-'~otmlm2n D , 

- T - pT2 2 ~ 5  - p2Tx 5mlm2n2D] ' 
1 ~ 5 - m 3 p X l t - c ° s ' ~  - ~  +YlY2CXp°tr 2 yly2(t°4'l-t34.2) np - '3  p 

4 2 2 4n(m21~l mill2] ' ~t...~.~, ~2 = 
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= 8 2 

,2 
2 4n ~ mix i _ 1 ~ ~*~<ji 6% -- 

= nli"'iUi'l " I~P~2i=I Yi °)4,J 3yly21xrxD ill 

In the case of a single-component gas [7] we have 
for Maxwellian molecules 

for solid spheres 

4 8 4 
~'  = "~' ~3 = i 5 '  ~s = l~ 

By analogy with the case of a single-component gas [6] we introduce the following dimensionless 
quantities 

c3 _ q , ~ . ,  p, : ~p , ,  p -  ~ l ,  ~ :  _ ~ : ~ , l  

Rc~ r + : &  f :  ___=_. R:R, c, ~ ~, 
Co ' R 

(1.9) 

2 _ c o  
- , Z = " ~ _ Z  

ix R~t- C3~t- ~t 

In what follows it will be more convenient to choose the velocity u, the temperature T and the 
concentration cl as the independent hydrodynamic quantities. The density p and the pressure p are 
found from Eqs (1.1) and (1.5) 

1 - -  T 
p=- - ,  p=(qRi +c2R2)-- (1.10) 

u u 

Equations (1.2)-(1.4) can then be written in the form (here and henceforth we will omit the bar above 
dimensionless quantities) 

~,-z> ~ . I+~ '~ '~  c,R, +~R~)~ ' ~L r az . ~ ) ]  -d r -  ' 

4 a . .  p d2. ( .  - P~ a2r ~ ( .  ~.., R,~,:~.A a2c, -,  (1.n) 

l , 2  + cp l - ' ~ l l u '~ -  D (cpt 
.u,  " q " 2  J 

[( ..-.. 
I+¢XICIC2 Clli + c 2 R 2  t T dz u dz)] 

*[ - ] d a u  
~ t r t ,  _l~i,]~_r + 

1~5 + 134 (Cpl - cp2)T + ~4 un2mlral 

7+1~). a_~r +[l~,(r, d _ ~  _ _ CoC, <~, P d2T A 
- R2)T+I~3u] d'r" 2 = A, C~ (1.13) 

The boundary conditions to system (1.11)-(1.13) have the form 
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q (:1:**) = c [ ,  u(T**) = u :~, T ( ~ , )  = T :F 

d_9 du d'l"~ =0 

The downstream and upstream quantities are related by the equations 

2y M 2 - 1  T ± =u±(l_u±) 
c ~ = c l ,  u+=u - y + l y M 2 + l  , 

(1.14) 

u -  - y - - ~ - ~  , M = u -  

T h e  shock-wave intensity will be represented by the parameter [6] 

e = u _ _ u  + 2 y  M 2 - 1  

Using the relations 

u =  Y 1 
+ - e u  , ct = c~ + ~ 

y + l  2 
e 2 (1.15) 

T y , y - 1  
= . .---.-.-.-.-.-.-_~W, -r 2 + 1 e % - ~  (y +1) (y ) 4 

we introduce the new variables v, x, f. From (1.14) we have the following boundary conditions for 
these 

av d~ e l=0  z=:go*:o =+1, x=:i=l, f =O, . 
dz dz dz 

System of equations (1.11)-(1.13) is autonomous, i.e. it is invariant under a shift of the coordinate 
z ---> z + z0. Hence, we can introduce an additional condition, fixing the origin of coordinates 

o(0) = 0 (1.16) 

The solution for weak shock waves. For weak shock waves e <~ 1. The solution of system (1.11)-(1.13) 
will be sought in the form of power series in 

v = v0 + ev l  + e2v2 + ... (1 .17)  

and similarly for x and f. 
We will introduce the scale transformation 

z = He  (1 .18)  

since differentiation with respect to z increases the order of smallness with respect to ~ by unity, and 
we will also take into account the fact that 

y2 e2 y + l  (1.19) 
A = 2 ( y 2 ,  l) 8(y - 1) 

We substitute expressions (1.17)-(1.19) into Eqs (1.11)-(1.13) and equate terms of like powers of e. 
The approximation of e ° leads to identities. In the approximation of ~ we obtain 

fo = 0, x0 = -u0 (1.20) 

but, to determine the explicit form of v0 we need to consider the next approximation with respect to e, 
in which we obtain 
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bav o / a~ = - - ( l  -u g ) 

4y [4. _ <y-l) 2 ] 
b = (r--~--~ [-g-i~ + y x-  +(Y+I)~2D- ' 

= - Y+l.otylY2D- duo., /J 
2y di 

y + l . .  2 - ( 4 _  y - l _ _ _  y - 1  _']du o 

+"' - -7 --Y-" J 
The solution of Eq. (1.21) which satisfies the conditions 

vo(~=o) = + l ,  vo(o) = o 

a=a;+Y-!c~? 
Y 

(1.21) 

(1.22) 

(1.23) 

is 

It then follows from (1.22) that 

Oo = -th( ~/b ) (1.24) 

fl = 2y b °tYJy2ch-2 (1.25) 

Hence, in complete agreement with well-known results [2], the change in the concentration is a second- 
order infinitesimal in e, and within the shock wave the concentration of the light component increases, 
reaching a maximum at the point z = 0 (the centre of the wave), and then decreases to an asymptotic 
value. It also follows from (1.25) that the diffusion rate of the heavy molecules of the mixture is 
everywhere greater than that of the light molecules. 

To determine vl and Xl we must change to the third approximation in e. In this approximation it is 
necessary to take into account the Burnett terms in the equations and the changes in the Navier- 
Stokes transfer coefficients due to changes in the temperature and pressure 

2(y+O kat  ) 
(1.26) 

and also the expressions for ×, pD, o~r. 
Here we will only derive those necessary for further correction, taking into account the fact that 

D - p-a and the concentrations can be assumed constant. 
The structure of the equations is the same as that of the equations of the previous approximation: 

the first-order differential equation for Vl and the relations which definer2 and x 2 + v 2. The equation 
for v 1 has the form 

du i 4._____..~__~ G d~' 0 
d'/ 2u°vl = (y+l)  3 b 2 d~ 2 (1.27) 

For what follows it will be convenient to split the coefficient G into three parts 

G = G l + G 2 + G 3 (1.28) 

16 .2 (37+I)(7-I) 3 x2 4 
G, =-~ - ~,2 --~(y-1)(3-y)~tx- 

- '~ y YtY2 2 'y-1 2 + 3 y 2 + y  -1  2 

+2"}' 2 - 1)0¢~ +(7:2+ 2 y -  3)¢x~- + ~-'~(2y3 + 772+ 37 - 1)(xpCtr ]yly2xD- 
(1.29) 
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. . . 2 f ~  + 1  . ( ¥ 2 + ~  + 1 - 2  
--(.t + O L--~-,- y,y2 [ ¥ % 

+ 2y3 +Y2 + Y - I  )]  
y2 °tpGtr YlY20t2 D2 

2(T - ])(~,2 + l) _2 
+ T2 tXr + 

txD-( dOCr S- ] +2 i y, J 
(1.30) 

G3 ----¢~1 T "1 ¥2 I 't2 -¢~3 (T+I)2( 'y-I)  1+ +03sT 2 T - ! x 2  
¥ iT+l )  ) y + l  

(1.31) 

where G1 is the contribution from the main (Navier-Stokes) terms in the hydrodynamic equations with 
unperturbed values of the kinetic coefficients, G2 is the additional contribution from them due to changes 
in the kinetic coefficients and G 3 is the contribution from the Burnett terms. 

The solution of Eq. (1.27) which satisfies the boundary conditions 

u0 (-x-**) = 0, o1(0) = 0 

is 

8¥ G ln(clff.) 
V I ( Z ) = ( - ~  b 2 ch2~ (1.32) 

The width of the shock wave A is found from the maximum slope of the density profile of the mixture 
using the relation 

A-I = ( p + ,  p- )-I .---.~-~,~ ( 1 . 33 )  

e 

The terms of the expansion of the density in powers of e are obtained from (1.10) 

P=  ¥+1 + e %  +e2qh +... 

¥ (1.34) 

. {Po= ¥ 2 '  =~- ( ' -~" )  ~"~'y O - I )  

Then A -1 can also be written in the form of a series in 

^-i = E^~t + E2^~ +... (1.35) 

(the expansion begins with the first power of e, since when E = 0 the shock wave disappears, i.e. 
h ~ oo). 

In the main approximation in e from (1.33)-(1.35) we obtain the well-known formula for the width 
of the shock wave [2] 

^7 :e(p + p-)-' a1~9-1 
- I dz  Iz :o  = 2--b 

(1.36) 

We will calculate the correction to A1, which arises when % is taken into account in the expansion 
of the density (1.34). The point z = z*, at which the density profile has the maximum slope, is found 
from the condition 
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d 2 
dz 2 (~Po + ¢2qh ) = 0 

The approximate solution of this equation has the form 

z.=<y2..~l 4y G) • (y+l)2 b 2 +O(t~2) 

Then 

A-'=(p+-p-)-'{ d(e@°~ -~;2¢'°t;I =~+0,:, 
I a z  I,=: 2b 

(1.37) 

Hence, the second approximation makes no contribution to the width of the shock wave. This can 
obviously be explained by the fact that formula (1.36) agrees satisfactorily with experimental data and 
the results of numerical calculations up to the values of the Mach numberM ~ 1.8 (for which e ~ 0.437) 
[8]. The non-zero correction - e z obtained in [9] can be explained by the fact that in [9] the point 
z = 0 is taken instead of z* as the point of maximum slope of the density profile. 

We will consider the asymmetry of the profiles of the hydrodynamic quantities and the distances 
between their centres for the case of single-component gases. 

For the quantitative characteristic of the degree of asymmetry of the profiles of the hydrodynamic 
quantities in the shock wave we will use the asymmetry parameter of the density profile (the asymmetry 
quotient) [3] 

(z~' Y" )-', p(z)-p- 
(1.38) 

where z~ is the centre of the density profile, i.e. 

P,(~) = ~ (1.39) 

The approximate solution of Eq. (1.39) is 

z~, = E ~-~i b + O(~ 2) (1.40) 

Substituting (1.40) into (1.38) we obtain 

[ (m)I ( % 8y G - 1 1 + E 8)' G 1 
Q~ = 1 - e (T + 1) 2 b2 (T + 1) 2 ~-V l - ~  - 1 (1.41) 

In the first approximation, the density, temperature and velocity profiles are described by a hyperbolic 
tangent. They are strictly antisymmetric. Here ai = 1(i = 9, u, 7). In the next approximation, the profiles 
become asymmetric. It follows from (1.41) that Qp > 1 if G < 0 and Qp < 1 if G > 0. 

We need to establish the sign of the coefficient G. The coefficients G1, Gz and G3 can be reduced to 
the form 

Q'- 1) 3)(4 ,~2 

=y(y-1 ) (41  t,a (y - l )2  y 4 d g  (y-l)2._~] G 2 (y + ,)2 Ix-~t + +-- >0 (1.42) 
v J t 3 a r  't 

1)( y3 ) _ 2 y _ ! x  2 G3 = ~l  Y3 +(" / -  I)(Y+ 1 ) 3 ) , 2  ! "t2 - ¢b 3 ("/+ I)2(Y-y 1 + ~  l.t~ + cosy y + l  

It can be verified that the contribution to G from the Navier-Stokes terms (G1 + G2) < 0. This is 
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easily done for the power potentials of intermolecular interaction, for which × - g - T ~. The limiting 
cases here are Maxwellian molecules (s = 1) and solid elastic spheres (s = 1/2). Taking into account 
the fact that × = 15 g/4, y = 5/3, from (1.29), (1.30) and (1.31) we obtain 

We have 

Gl = -2.4948 g2, G2 = 0.1215 sg 2, G 3 = 27.2438 g2 

G = GI + G2 + G3 = 24.8705 Ix 2 > 0 

for Maxwellian molecules (for solid spheres the value of G is even greater). 
Experiments [3] and numerical solutions of Burnett's equations [4] indicate that Qp < 1 when M ~< 

1.8. At the same time, a numerical solution of the Navier-Stokes equations [4] leads to the qualitatively 
incorrect result Qp > 1 in this range of Mach numbers. 

Hence, only when the Burnett terms are taken into account in the hydrodynamic equations can one 
obtain qualitatively correct values of the asymmetry parameter of the density profile in a weak shock wave. 

The calculation of the centre z~. and the asymmetry parameter Qr of the temperature profile T.(z) 
is similar to the calculation ofz~, and Qp. It leads to the results 

Q r = ~  ' z~=_r~+0(e2), B = l , t + 1  4 ~ Is 
2 y - 1  3 ¥ - 1 b  (1.43) 

It follows from (1.40) and (1.43) that z~ > 0 and z~ < 0, i.e. the temperature profile leads the density 
profile. This result is physically obvious. Molecules having a higher velocity penetrate into the upstream 
region of the shock-wave front. The contribution of these molecules to the density is small in view of 
the small number of such molecules, but the contribution to the temperature is finite in view of their 
high energy. The effect noted above also occurs in a shock wave of medium intensity. 

For the velocity profile, calculation leads to the result Zu* = 0. The velocity profile lies between the 
temperature and density profiles. 

Note that, in the first approximation, the centres of the profiles of the hydrodynamic quantities coincide. 

2. THE P R O P A G A T I O N  OF S M A L L - A M P L I T U D E  
P E R T U R B A T I O N S  IN GASEOUS M I X T U R E S  

The ~ p r o b l e m .  We will take as the macroscopic quantities which describe the state of the binary gaseous 
mixture the mass concentration of one of the components of the mixture Cl = Pl/P, the hydrodynamic velocity 
u, the pressurep and the temperature T. Suppose small fluctuations in the macroscopic quantities 

q=qo+C[ ,  u = 0 + u ' ,  p = p o + p  ", T = T 0 + T '  (2.1) 

are produced in a mixture at rest and in thermodynamic equilibrium. The density fluctuations are defined 
in terms of these using the equation of state 

2 
p" = p o p " - N r  - p-~-,o,.,~ - R2)c; 

P0 To P0 
(2.2) 

Substituting (2.1) and (2.2) into the one-dimensional Burnett equations [5] and linearizing, we obtain 

I ~p' I ~T' PoTo;lCf ~u' _ 

Po ~t T o ~t Po ~t l'-~"Z =0 

ac; 5 :c ;  "_ 
+ ro )j po _ o  

3u" ~p' 4 ~2u' ^ ~3p, ~3T' a ~3c[ 
p0N-, 

" ~ ' P o ~ - ~ " q " T ' - - - ~  2 ÷ 2 T O Ot OZ i)Z 2 n6mlm 2 u[  igZ 



Structure of a weak shock wave and propagation of perturbations in gaseous mixtures 435 

: .~ ~'~" "r : r ' ) ]_ ( .  , .  ~ p<,po~ ] ~  
+C, oC~O(p o ~z +ro az 2 )j [.>"T"42ngmtmlJa? : °  

(2.3) 

We will seek the solution of  system (2.3) in the form of plane waves 

l ' ( t ,  z) = f" exp(/kz - io~t), F" = (c~, u', p', T') (2.4) 

where k is the wave number and to is the frequency. Substituting (2.4) into (2.3) we obtain a system of 
linear homogeneous algebraic equations for the amplitudes 

ito pOT° ( R~ - R2 )~i + ilv~ - ico l-~" P + i ¢ o l  T = o 
t:'o Po To 

I a ot ^ (-i,~ + : o ~ ,  - e ' ~ , - a  + :c,0c,.d'-" ~+-7- r ] : 0  
Po t, po ~0 ) 

ik3~,~, -(iC°Po -t2 4t t~  + i(k + k'~, ) '  + ik3~2T = O (2.5) 

t25-- P P--~D~i+[ikPo+ik'(~s+~45- P°P°a )]~+ 
2 n~mim l 2 ~m---~'~tm~ )J  u 

+,: -,<:(,< + 5-.,o..o ,.,.o o ) ] .  = 0 
2,~m,,,~ L 2To t 2 To )J 

Here a = o~ + 2at /5  and we have omitted the zero subscripts for simplicity. 
For non-trivial solutions of  (2.5) to exist it is necessary for the determinant of its coefficients to be 

zero. Expanding the determinant, we obtain the dispersion equation 

+5 (l+yiy,~a~,zD]+k'3xD[34-io~(l+yiy, a~,4v]+ (2.6) 

77L77"' +1~, +(R, - R~)(4% + (Y'T)~4 T .] 

Here 

b.=16 b 4 2 _~ x 
15 = ' 3 V + 3  Z+  YlY2Ot2D" V=~t '  Z=  P P% 

,'o = t 3 p )  o"  2 , 

(2.7) 

v, g are the kinematic viscosity and the thermal diffusivity, u0 is the adiabatic velocity of  found, and 
the coefficient bo occurs in the Kirchhoff-Stokes formula as a factor (it was given previously in Eq. (1.21) 
in dimensionless form). When obtaining Eq. (2.6) we dropped terms of  the order of  Kn°since we are 
considering the Burnett  approximation. 

Equation (2.6) is a fourth-order algebraic equation in to, i fk is regarded as a given quantity (the initial 
problem). The roots of the equation will be sought in the form of an expansion in k. In fact, the expansion 
is carried out i_n terms of  dimensionless quantities vk/ao, gk/ao, Dk/ao. Taking into account the fact that 
v - X ~ D - 1 ~, k = 21t/~, ([ is the mean free path of the molecules, ~ is the thermal velocity of  the 
molecules, fi - ao and ~ is the wavelength), we obtain that these quantities are proportional to the 
Knudsen number Kn = 1/~. 

Hence we obtain two pure imaginary roots 
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to~.2 = --/k20 + O(k 4) 

2o< + + 

Another pair of roots has the form 

o)3. 4 --- + a o k - i l  bok 2 ~. hl - h  ! k 3 +O(k 'i) 
2ao 

(2.8) 

(2.9) 

4 _r 10 + 5 (  12 3 + 

+5 l+-Sy, D 

,,.7 lI,B 

Here we have denoted by hi and h 2 the contributions which derive from the Navier--Stokes and Burnett 
approximations. 

A definite mode corresponds to each root. We will explain the physical meaning of these modes. We 
substitute into (2.5) the first root 0)1 = ~k27,,/2, in which we have neglected the small term proportional 
to aT. Solving (2.5) for the amplitudes F, we obtain that 

In this mode the temperature fluctuations decay due to the thermal conductivity when u = 0 andp and 
cl are constant (the thermal mode). Similarly, the second root to2 = -ik2D/2 leads to the relation 

fi ~ b ~ ~ ~ Kn cl'at Cl 

Here the concentration fluctuations decay due to diffusion when u = 0 and p and T are constant (the 
diffusion mode). These modes are weakly related to one another via the thermal diffusion. Substituting 
(o3 and to4 into (2.5) we obtain that the motion of the medium consists of two sound waves propagating 
in opposite directions. The number of independent modes of motion, having different physical meanings, 
is identical with the number of conservation laws (the hydrodynamic equations). 

The boundary-value problem. For comparison with experimental results obtained by measurements 
of the velocity and absorption of coefficient of sound, in which the.frequency co is a specified real quantity, 
we need to solve dispersion equation (2.6) for the wave number k (the boundary-value problem). The 
order of Eq. (2.6) is higher with respect to k than with respect to co, so there are additional roots. 
Numerical solution of the dispersion equation in the case of a single-component gas [10] indicates that 
the wave corresponding to these roots is strongly attenuated. The relation Im kl <~ Im k 2 ,~ Im k 3 holds 
between the attenuation factors of the acoustic, thermal and additional waves (the 1-wave, the II-wave 
and the III-wave in the terminology of [10]) in the low-frequency domains. Moreover, the III- 
wave possesses non-physical properties: Im k 3 >> Re  k 3 unlike the I-wave (Ira kl ~ Re kl) and the II- 
wave (Im k2 ~ Re k2), and at high frequencies Re k 3 changes sign (this denotes that the direction of 
the wave propagation is reversed). Some doubt has been expressed regarding its reality [10]. 

From a mathematical point of view it is much simpler to convert expansions (2.8) and (2.9) rather 
than obtain solutions of Eq. (2.6) in the form of series in c0. Moreover, in this case we get rid of non- 
physical roots. We then have from (2.9) 

ka., i = + 1 t o  +_ i b ,  el2 :r- a <  t° 3 + 0(o)4 ) (2.10) 

d=4-v2 1 2 20 _['50 
+ --2-- VX + ylY2tX/~ -X-- (XV + 
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for the acoustic modes. For the thermal and diffusion modes we obtain from (2.8) 

kl. 2 = +(l + i)4- ~ + 0(03 ~) (2.11) 

From (2.10) we obtain and following equations for the phase velocity of sound a)ph and the absorption 
coefficient at the wavelength S 

v~ k t o J  
(2.12) 

S= im(  aok ~ -_ + ~--~ + ... 
k to / 2a~ 

(2.13) 

It follows from (2.12) that there is a dispersion of the sound curves, the dispersion coefficient 
d ~ Kn 2 and it contains both the Navier-Stokes contributions and the Burnett contributions, and they 
are of the same order of magnitude. An analysis of the expression for d shows that in general, d > 0. 
Consequently, the velocity of sound increases as the frequency increases (positive dispersion). The 
attenuation factor is determined solely by the Navier-Stokes terms, while the next term gives the 
contribution of the super-Buruett approximation also. 

Another situation arises in a mixture in which the masses of the molecules differ considerably 
(m2 >> rnx) In a helium-xenon mixture with an 80% xenon content it has been shown experimentally 
that there is negative dispersion. We can assume here that "~(ml/m2) - Yl ~ 1. Then, we can obtain 
from the general formulae [5, 7] 

I'tl = l'tu, i.t2 = Y2 kaoT ' 1 
Yl 2A12 ~ n 0 , 0  ~ ~tl 

, n ( 2 , 2 )  
2 ~ ""2  

Yl "3x&12 

3 kBoT I 
D= 

16 m2n n0.1) ~612 

Consequently 

v ~  z ~  ~ D ~ D  

Hence the term with D 2 is the largest in the dispersion coefficient. As estimates show, the Burnett con- 
tributions are small. We then have 

d --- - 5  Y-Z D 2 <0 
3 Yl 

which leads to negative dispersion. 
One further fact is worth mentioning. The domain of applicability of the solution in the form of a 

series in to is limited by the frequency to* - (ml/rn2)x -1 ('c -1 is the collision frequency of the light 
molecules), for which the second term in (2.12) becomes of the same order as the first. The limiting 
frequency to* is identical with the well-known estimate of the inverse relaxation time of the temperature 
of the components of the mixture. In the frequency range to ~> to* it is necessary to use the equations 
of two-temperature gas dynamics or the equations of two-velocity and two-temperature gas dynamics. 
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